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Lie Symmetries of Quadratic Two-Dimensional
Difference Equations

M. A. Almeida,! F. C. Santos,' and 1. C. Moreira!

Received June 4, 1996

We find all systems of first-order quadratic autonomous two-dimensional
difference equations which have two linear Lie symmetries. Knowledge of these
symmetries permits the systems to be integrated by a reduction procedure.

The identification of integrable systems for continuous or discrete equa-
tions is an important problem in applied mathematics. Discrete dynamical
systems have been studied in many contexts in the recent years. They appear
in discretization procedures of continuous systems, or, more naturally, in
models described within a discrete space, for instance, in many biological
systems. Two-dimensional continuous systems of first-order autonomous
ordinary differential equations have no chaotic behavior; however, there are
chaotic two-dimensional autonomous difference equations, Hénon’s map, for
example (Hénon, 1976). In many cases, discretization of completely integrable
continuous systems also can exhibit chaotic behavior (Date et al., 1982).

Although integrable discrete systems have been known for decades
(MacMillan, 1971), few systematic studies were undertaken in this direction
(Hirota, 1979; Maeda, 1987; Grammaticos et al., 1991; Quispel and Sahade-
van, 1993). We study here two-dimensional systems of first-order quadratic
autonomous difference equations. These equations are discrete counterparts
of Lotka—Volterra continuous systems, which are important in population
dynamics (Gardini et al., 1987). We analyze the invariance of these discrete
equations under a continuous group of symmetries for determining integrable
cases. Maeda (1987) extended Lie’s algorithm for finding symmetries of
difference equations and constructed a procedure for making a reduction of
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an autonomous system if it has a Lie symmetry. Quispel and Sahadevan
(1993) extended this method to nonautonomous systems.

We summarize the method formulated by Quispel and Sahadevan (1993).
Consider a system of coupled difference equations

Xy = Ox), n) (D
where @' are given functions and i = 1, ..., N. The infinitesimal
transformation

x)i=x + eE(x), n) (2

is a symmetry transformation if
EQ@0h m),n + 1) = 3, B n) - (@(ehy ) 3)
=1 ax
The symmetry operator is
U=3 62 @
F=r I} o}

We now apply a coordinate transformation y = y(x) in the system (1), which
brings the system to the form
Yor1 = Wiyh, 1) &)

and the symmetry operator is changed to

& L, 0
= j 6
U=3 5 ©)
where
y . d
£y n) = & n) =5 () @)
X
If a Lie symmetry exists, we can choose a coordinate system where
£y, m) = ¥4 ®
and where the symmetry operator takes the form
d
U= ay 9

In this case the conditions for symmetry (3) are written as

aiy, ) = 8 (10)
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and after integration we have
Vi, )y =y + 0G4 ..., n, i=1,...,N-1
Ty, n) = N2, ..., ¥, n) (1D

We see that in the new y coordinates the N — 1 variables y?, ..., y¥ form
a new system, and equation (1) is decoupled and can be integrated. If we
have a new symmetry, we need to solve the system

Uy/ = ¥ 12)

to find the expected coordinates. If N = 2, we need two linear independent
Lie symmetries for integrating the system.
We will consider the system

Xas1 = G + QioXp + A Yn + G XeYa + GoX; + An2Yi
Yust = boo + broXy + boryn + buXaya + baoxi + bey: (13)
We make the ansatz that the symmetries have linear dependence in x, and y,:
£l = coln) + cy(mx, + cx(n)y,
& = dy(n) + di(n)x, + dy(n)y, (14)

By applying equations (7), we get the following system of linear equations
to be solved:

0=con+ 1) + c(n + Dag + c2(n + Dby — ajoco(n) — apdy(n)
0 = —ajco(n) + c1(n + Dag, + cx(n + Dby, — agda(n)

— 2apdy(n) — ajocy(n)
0 = c(n + Dby, + c1(n + Dag, — aycx(n) — 2apd,(n)
0 = ci(n + Day — ajoci(n) — 2axco(n) — andy(n)

— apdi(n) + c(n + Dby
0 = ci(n + Dayy — 2axcx(n) ~ ayci(n) + c(n + Dby,

= 2a0d\(n) — aydy(n)
0 = cin + Day — 2ayci(n) + cx(n + by ~ aydi(n) (15)
0 =dyn + 1)+ di(n + Day + dy(n + Dby — bioce(n) — by dp(n)
0 = —byice(n) + di(n + Dyag; + do(n + Dbg; — byds(n)

= 2bgdo(n) — bigex(n)
0 = dy(n + Dby, + di(n + Dag, — biicy(n) — 2byd;y(n)
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0 = di(n + Dayg — bioci(n) — 2byco(n) — biido(n)
= boidi(n) + dy(n + 1)byg

0 =dy(n + Da,; — 2byca(n) — biey(n) + do(n + Dby,
= 2bgyd\(n) — bydy(n)

0 = dy(n + Day — 2bxci(n) + do(n + )by — bidi(n)

With the help of algebraic computation we solved this system and found
several cases with two linear independent Lie symmetries (Table I). Some
of these cases can be integrated trivially. As an example of application of
the reduction method we will solve here case 10. The solution of other cases
which are not trivially integrated are given in Table IL

We apply conditions (8) in U, to obtain the first reduction in case 10:

d d
1 =27 x, — (X)) + yo — (X
(xn 2y K0 g n))
i} a
=2 x, = (Y,) + yo — (¥, 16
0 (xn o, (Y + yn ay"( ,.)) (16)

where X, and Y, are the sought new (first) coordinates. These equations are
easily solved to give

_ In@2",)

n = 2,,

Y, =2 a7
x,

The transformed system is

2W(=2 + ap¥,
X, =X, + 2! ln< ( oz ))

2’!
v . - 1+ Y2 (18)
" Y2 + apY,)

We applied conditions (8) in U, to obtain the second reduction:

=& l)n 2y, + aoz) (V,,) - (=2"(—1 + apY, + Y2

)

l=)

QY + ap) oo (Wn) — (=2"(-1 + ant, 19)

where V, and W, are the second transformed coordinates.
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Table L.
No. Mappings Symmetry vector fields
U xn=an+tx+auyt+y o _ 3
) =
dx,
_ ap(—1 + by) b
e 2 " oy —ab)n + D\ 3
2 4 "1 ox,
ag  y\ @
+ (= +Z—
( 4 2) ay,
2 a{a — 2) Q10 &} boo a
=" =21 —+ + yu ) —
Xn+ 4 A10Xn + x?l UI 2 2 Xp 6x,, —1 + bm Yn ayn
Yaer = boo + b1 Ya 9
U, = bl P
3 ala — 2 a
Xnal ="|0(—IZ_'2+a10X,, +X$‘ U| = 2n(¥+xn)—_+ (1 - bO()'l +yn)a—
Yne1 = b()0 + Yn
+1 Uz - i
Ya
4 Xnsl = A10X, 3
+ — —_—
_ Ul Xn ax,, (n l)yn F ;
Yael = XnYaq
a
U, = dle ox,
5 Xy =12 ]
Xps) UI= nn<§_5;_)
Y1l = anyn + )’3 " "
a
= + —_
U2 2 (X,, yn) ayn
6 Xun =i ( 3 a)
U =27+ y. 7
ax, Y,
yn-H = xﬁ y
d
= (=1 —_ —
U2 2) (xn X Yn ayn)
T Xp = %
x,, 1 UI = zn(x"ai + a_a~)
Yner T bllxnyn " I
" 9
= - + 2y, —
UZ 3 ( xna ) Y, ayn
8 el = XnYn 3 3
Tt T A U1=2"""§+”"a_)
yn+l = XpYn — ﬁ " yn
B Gl Vi a2, 9
U2 - 3 [(ZX,, 3yn) 8x,, Yn ay”]
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Table I. Continued.

No. Mappings Symmetry vector fields
9 Xput = XpYn 3
+1 X, Yy UI = 21!(",'l ai + yn a_)
Y1 = bZOI% n n
(-1 ] 3
= —— — —_— —_—
U ==3 ( o t Dy
10 =2y, + 2 9
Yu + G0} v, = 2"(""5% +y, 5_)
Yoot = T+ -
U, = (=27 (agaXn + 2y4) 2
n n 6x,,
— 2% -
Qo2 Yn n 3y,
11 = 2x,¥,
Y UI = zn(xn 3 + Yn %)
Ynet = xr2| + yﬁ " In
a a
L —_— 4 —_—
UZ 2 (yn axn X ay,.)
12 Xy =5
Xp4t U, = ZH(x" 5%— + 2y, :{1—)
= yi n n
Up = ~-2| s + 29 o
2 n n. ax,.
d
- (a02yn - 2xn) ayn]
13 = —2x,y, — 4y; i)
Y ¥ U, = 2"(x,, 2 + Y, ——-)
2 ox,, ay,
=Xyt =+
Ty Uz oy, 2 _ Gt 8
2 In ax, 8 3Ya

Va

(=2)™"

solution of these equations is

eXn(—1 + ap¥, + Y™

W, =
\/4 + a%z f

l(_2Y,,+ao2+,/4+ai§2)

—\/4 + a(2)2 + 2Y,, + [711%)

The second transformed difference system is linear

Var = (=120 Y,

Wn+1 =W +

(=2)™"1 . af + J4 + ahay + 2

i n
Jad+a} —ah+ J4+ ahay — 2

(20)

(2D
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Table IL.
No. Integrated systems
8 x, = —(—y)lm V2 Mg — yo)- 02
+ (‘yo)lz(_l)vl+l+2n+l]/3(x0 _ yo)[z(_l)n+2ny3
Yo = —(oy T — T2
10 iCroanyo = 3 + )7
X, =
Ja+ ai,
y [( 24 + aly + JAF ahao)xe + 4J3 F aavo )"‘2’—'”
(@ + ap + J4 + ahanX—ah + J4 + ahag ~ Dxo + 43 + ady,
y ( 4 + akay, — 2 [(-2f"=106
4 + aga, + 2
. ( 24 + ahy + J4 + ahan)x + 44 + adhye A
@+ ak + J4 + ahan)(—ad, + 4+ abagy — Dx + 44 + akyyo
9 ( a + JA + ahap +2 “"’"‘”’6]
—ap + J4 + ajpap — 2
G B @ + aby + AT agian)
" 16 + 4a3,
(( 2(4 + af + \/4 F Gam)xe + 4J% F aby -y
4+ afy + /4 + ahap)(—a, + f+amam—2)xo+4f+amyo
—ad + J& + dhay — 2\CTT 2 L T )
— + —_—
o+ JA T g £ 2 (~atz ez = 2)
+ 2( 24 + ah + J4 + aGanxo + 4/4 + dhy, T
(4 + afy + /4 + ahag)(—ah, + /4 + ahan — Dxo + 4/4 + ahyo
(( @ + JA+ adyap + 2 )< iy
—ag + J4 + afa — 2
11 —xp + yo)¥' + yo¥
x, = (—x Yo) + (X0 + yo)

2 2

3y, = 10 = 300 + YOI + (19 + yo)*®
"SR AT Al + 0T
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Table II. Continued.

No. Integrated systems

1, 1 Ul 7| " + 2
x, = Y3232 @i i 2 4 arctan Yo T Yol | ™ — 2 "
4 2yo

n—1
" +2 82 + 2 + dxgyo\
4 cos{z [4 m(_y) o ”]})(u)
4 2y, )’%

(8}’(2) +X(2) + 4.X'()y0
In = N\ T

13

Y5

n +2
Xcosz— 4arctanx° Yo + 7 -
4 2)’0

-l
) y(2)"2—l3(2")+llf2

and can be easily integrated. In Table II we list also all solutions obtained
by this procedure for nontrivial cases.

To summarize, we have found all integrable systems of bidimensional
quadratic difference equations with two linear Lie symmetries and we have
integrated the nontrivial ones.
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